Supplemental Tables

Supplemental Table 1: Clinical data for five cases with rearrangements of *PRDM16* at 1p36

	Case 1	Case 2	Case 3	Case 4	Case 5	
Age/sex	48/F	48/F	58/M	61/M	67/F	
Clinical	Anemia.	Lymphadenopathy,	Splenomegaly,	One week history of dyspnea,	Thrombocytopenia,	Relapse 3
presentation		splenomegaly.	hepatomegaly,	night sweats, petechial lesions.	anemia.	years post-
			lymphadenopathy, fever.			diagnosis.
PB cell	WBC 40.5, Hb 5.7,	WBC 33.9	WBC 34.2, Hb 9.4, Plt	WBC 46, Hb, 7, Plt 7	WBC 4.3, LDH 577	NA
counts	Plt 123, LDH 429		29, LDH 429			
Cytology	NA	Myeloid blasts (75%),	Blasts (85%),	Blasts (42%), promonocytes	NA	NA
(PB)		erythroblasts (5%)	neutrophils (15%)	(20%), myelocytes (16%),		
				metamyelocytes (8%), monocytes		
				(3%), neutrophils (4%),		
				lymphocytes (7%)		
% Blasts	80%	90%	NA	49%	26%	NA
(BM)						
Histology	NA	Hypercellular,	Paratrabecular focal	Hypercellular with blast cells	Hypercellular,	NA
(BM)		megakaryocytes rare,	infiltration of B	(myeloblasts and monoblasts),	prominent erythroid	
		erythroid hyperplasia,	centroblastic centrocytic	erythroid component (38%),	hyperplasia,	
		mature granulo-	lymphocytes.	granulocytes (9%); MPO+ (3%),	erythroid precursors	
		monocytes (<10%);		ANBE+ (15%)	(50%),	
		MPO+ (20%), Sudan+			dyserythropoiesis;	
		(20%), PAS-, Esterases			MPO+ (40%) PAS+	
Immuno-	NA	CD34+, CD13+, c-Kit+,	CD20+, CD79a+	CD11b+, CD14+, CD34-	CD13+, CD33+,	NA
phenotype		CD7+ (major		(monocytic population); CD34+,	CD34-, GlycoA+,	
		population); CD15+,		CD13+, CD15+ (immature	MPO+	
		CD34- (minor		population); CD61- (both		
		population)		populations)		
Genetics	NA	FLT3-D835+	NA	NA	FLT3 wt, WT1+	NPM wt
Diagnosis	AML-M4	AML-M1	NHL in leukemic	AML with trilineage dysplasia	AML-M6	AML-M2
			phase			
Outcome	Died after 3	Alive	Resistant to	Died 23 days after diagnosis due	Remission	Alive
	months		conventional	to respiratory failure and stroke		
			chemotherapy			

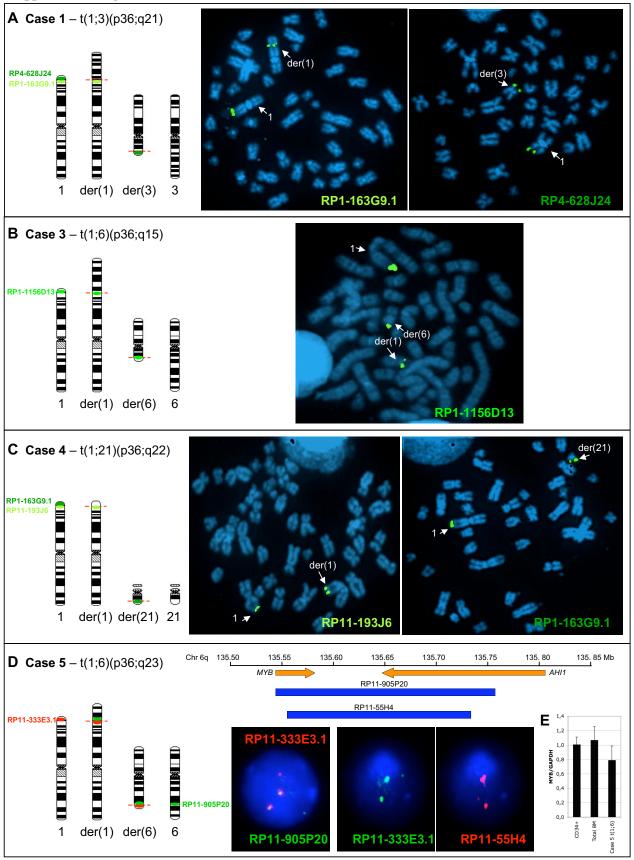
Abbreviations: ANBE, α -naphthyl butyrate esterase; BM, bone marrow; Hb, hemoglobin (g/dL); LDH, lactate dehydrogenase (U/L); MPO, myeloperoxidase; NA, not available; NHL, non-Hodgkin's lymphoma; PAS, periodic acid Schiff; PB, peripheral blood; Plt, platelets (x10³/ μ l); WBC, white blood cells (x10³/ μ l).

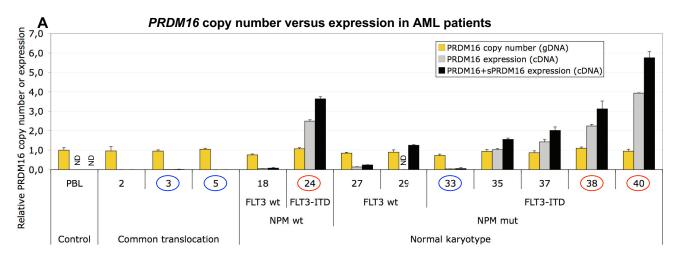
Supplemental Table 2: Primer sequences

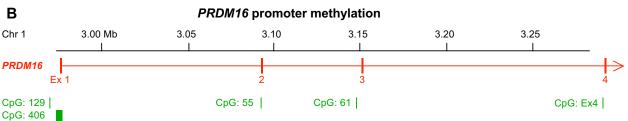
Experiment	Primer	Sequence 5'-3'	Specificity	
5' RACE	RACE4_R (inner)	CTTCTCACTGCCCAGGTCTTCG	Human PRDM16 ex4	
	RACE4_R (outer)	CCAGCCCCGCCTGATTTGC	Human PRDM16 ex4	
	RACE5_R	CCAGGGGTAGACGCCTTCCTTC	Human PRDM16 ex5	
	RACE7_R	CTTCCAGTTGAAGGCCTTGG	Human PRDM16 ex7	
RT-PCR of fusion transcripts	BACH2_F	CTCACTGACCTGTCACAAGGTTGCC	Human BACH2 ex5	
	PRDM16_R	CGCATTTGTACTCGCGCTCCTCCGT	Human PRDM16 ex7	
	AML1_F	GAGGGAAAAGCTTCACTCTG	Human AML1 ex4-5	
Sybr® Green Q-PCR	Sybr_F1	CGGCGGCAAAGGAGACAGAC	Human PRDM16 ex2	
	Sybr_R1	ACGCCACACGGATGTACTTG	Human PRDM16 ex4	
	Sybr_F2	CACGAGCACGAGAACGCAC	Human PRDM16 ex13	
	Sybr_R2	GTCCGACTCTGAGGTGGGAG	Human PRDM16 ex14	
	MYB_F	TTGGTCTGTTATTGCCAAGCAC	Human MYB ex5	
	MYB_R	CTGTCCAGGAGGTTTTCTTAAC	Human MYB ex5	
	GAPDH_F1	GCCTCAAGATCATCAGCAATGC	Human GAPDH ex6	
	GAPDH_R1	CCACGATACCAAAGTTGTCATGG	Human GAPDH ex7	
	PRDM16_gF	GGTCCATGGGAAGGACAGAG	Human PRDM16 in14	
	PRDM16_gR	TCCTGCTTCTCACTGGCTAGG	Human PRDM16 ex15	
	HOX9A_F	AGGAGGCTCATTTGCCCCAG	Human HOX9A in1	
	HOX9A_R	CGCATGAAGCCAGTTGGCTG	Human HOX9A ex2	
Taqman® Q-PCR	Taqm_F	CGAGGCGAGGAAGCT	Human PRDM16 ex1	
	Taqm_R	CCCGGTTGGGCTCATACATATTATT	Human PRDM16 ex1-2	
	Taqm_FAM	FAM-CCAAAAGTGACGTGACGTT	Human PRDM16 ex2	
	Hs00223162_m1	Applied Biosystems	Human PRDM16 ex14-15	
	Hs01922876_u1	Applied Biosystems	Human GAPDH	
TP53 sequence	TP53_F	ATGGAGGAGCCGCAGTCAG	Human TP53 ex2	
	TP53_R	TCAGTCTGAGTCAGGCCCT	Human TP53 ex11	
	TP53_F_int	AAGACCTGCCCTGTGCAGC	Human TP53 ex5	
	TP53_R_int	ACCTCAGGCGGCTCATAGG	Human TP53 ex6-7	
	TP53_F_ex4	CTGGCCCCTGTCATCTTCTG	Human TP53 ex4	
	TP53_R_ex8	GCACAAACACGCACCTCAAA	Human TP53 ex8	
RT-PCR of mouse tissues	MEL1PR_F *	CTGACGGACGTGGAAGTGTCG	Human PRDM16 ex3	
	MEL1PR_R *	CAGGGGTAGACGCCTTCCTT	Human PRDM16 ex5	
	MEL1N_F *	CCCCAGATCAGCCAATCTCACCA	Human PRDM16 ex12	
	MEL1N_R *	GGTGCCGGTCCAGGTTGGTC	Human PRDM16 ex13	
	GAPDH_F2	ACCACAGTCCATGCCATCAC	Mouse GAPDH	
	GAPDH_R2	TCCACCACCCTGTTGCTGTA	Mouse GAPDH	

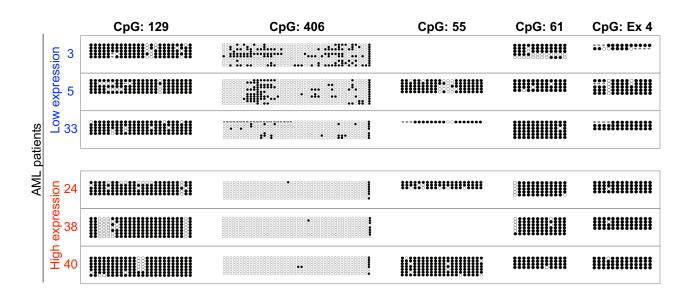
Supplemental Table 3: Bisulfite sequencing of CpG islands at *PRDM16* putative promoters.

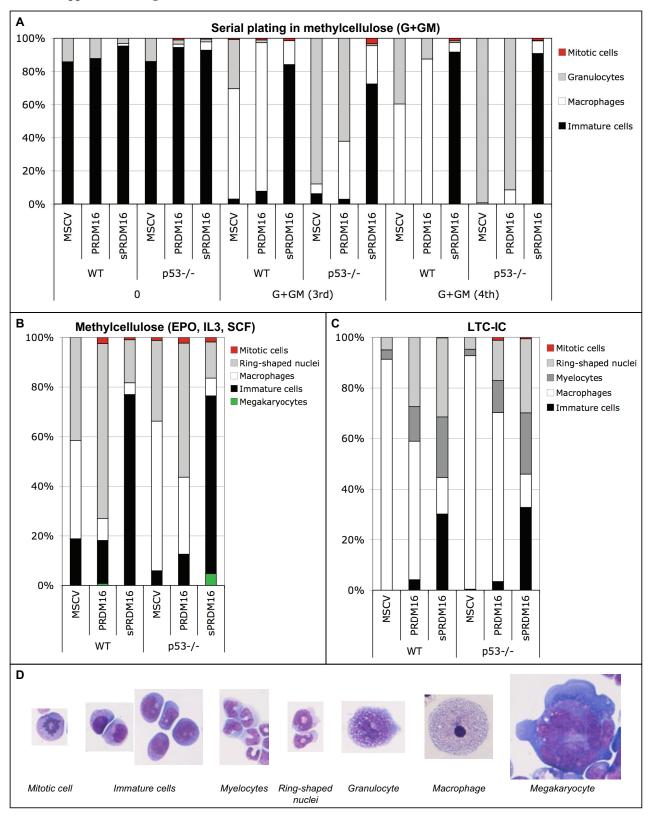
CpG	Upstream	Location (respect	Product	# CpGs analyzed	Primers (bisulfite sequencing) ^B
island ^A	of:	to exon)	size		
CpG: 129	Exon 1	-6161 to -5878 bp	284 bp	24	F: A <u>TTT</u> AAAGGGA <u>TT</u> TGAGAGGAAAG <u>TTT</u> /
					R: <u>A</u> CT <u>A</u> CCA <u>AA</u> A <u>AA</u> ACCCAA <u>AA</u> CC
CpG: 406	Exon 1	-1065 to -725 bp	341 bp	44	F: <u>TT</u> AGAGGGGAGTGT <u>TTT</u> AGTGG <u>TT</u>
					R: CCCCACCCAAC <u>AA</u> CT <u>A</u> CT <u>A</u> CTT
CpG: 55	Exon 2	-58 to +245 bp	303 bp	20	F: <u>T</u> TGTA <u>T</u> A <u>T</u> A <u>T</u> TGGGTGGGG <u>T</u> A
					\mathbf{R} : $\mathbf{A}\underline{\mathbf{A}}$ CCCCT $\underline{\mathbf{A}}\underline{\mathbf{A}}\underline{\mathbf{A}}$ AT $\underline{\mathbf{A}}\underline{\mathbf{A}}$ ACTCTC
CpG: 61	Exon 3	-3071 to -2924 bp	148 bp	12	F: GGG <u>TTT</u> AG <u>T</u> TAG <u>T</u> AAAATAAAGAGG
					R: CCT <u>AAA</u> CA <u>A</u> TT <u>AAA</u> AACACCAC
CpG: Ex4	Exon 4	-476 to -131 bp	346 bp	13	F: GAGTGATGTG <u>T</u> AGG <u>T</u> TG <u>TTT</u> TGAG <u>T</u>
					R: CCACCCTCC <u>AAA</u> CATCA <u>A</u> C <u>AAAA</u> CTC

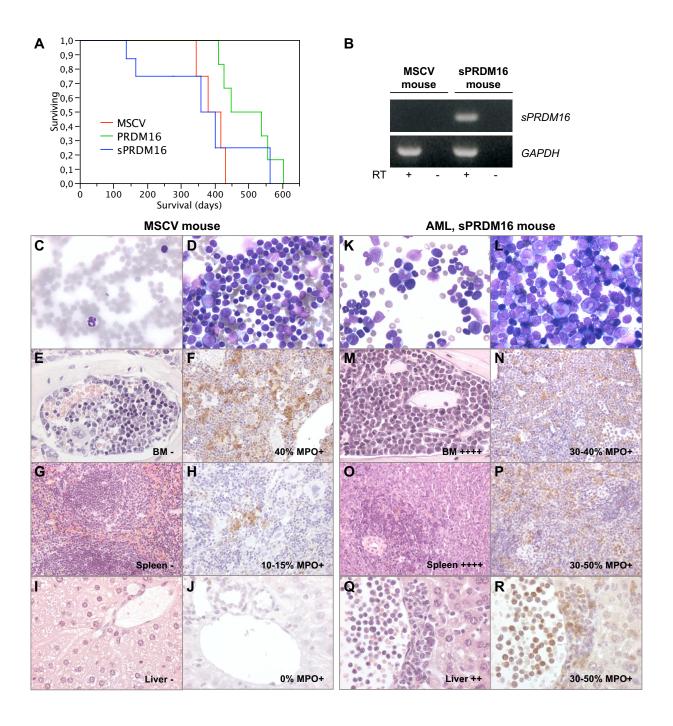

^A CpG island 406 lies within the promoter of the long isoform, *PRDM16*. CpG islands 129, 55 and 61 are conserved between species and contain potential transcriptional start sites. The CpG cluster upstream of exon 4 is differentially methylated in adult T-cell leukemia (22).

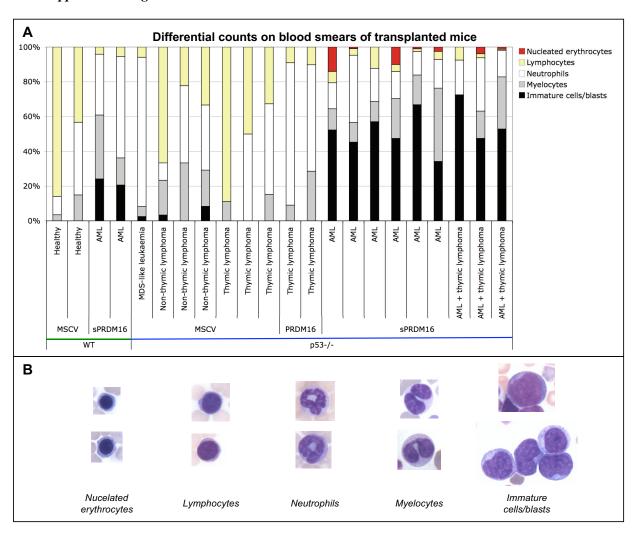

^B In the forward primer, T represents a C in the normal genomic sequence; in the reverse primer, A represents a G in the complementary strand of the normal genomic sequence.

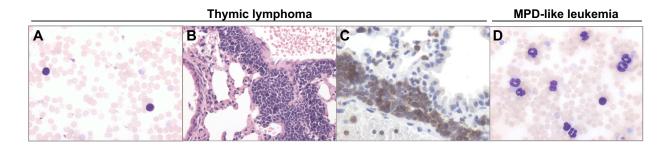

Supplemental Table 4: Infection and sorting efficiencies


Vector	Lin- cells	% GFP+ cells pre-sorting	% GFP+ cells post-sorting
MSCV	WT	26.0 ± 11.0	91.9 ± 3.2
	p53-/-	30.0 ± 6.6	96.2 ± 1.2
MSCV-PRDM16	WT	10.6 ± 6.3	90.4 ± 1.6
	p53-/-	13.2 ± 3.6	89.2 ± 2.0
MSCV-sPRDM16	WT	14.3 ± 5.4	90.5 ± 2.4
	p53-/-	16.6 ± 4.7	91.5 ± 2.7


Mean \pm SD are shown from five independent experiments







Supplemental Figure Legends

Supplemental Figure 1. FISH mapping of 1p36 breakpoints. A: In Case 1 with a t(1;3)(p36;q21) translocation, the 1p36 breakpoint lies between DNA clones RP1-163G9.1 (left image), hybridizing to derivative chromosome 1, der(1), and clone RP4-628J24 (right image), hybridizing to der(3). A similar pattern of hybridization was observed in Case 2 (not shown). **B**: In Case 3, with a t(1;6)(p36;q15) translocation, the 1p36 breakpoint lies within clone RP1-1156D13, which gave three hybridization signals, one on the normal chromosome 1, one on der(1) and one on der(6). C: In Case 4, with a t(1;21)(p36;q22) translocation, the 1p36 breakpoint lies between clones RP11-193J6 (left image), hybridizing to der(1), and RP1-163G9.1 (right image), hybridizing to der(21). **D**: In Case 5, with a t(1;6)(p36;q23) translocation, the 1p36 breakpoint lies within clone RP11-333E3.1 (left and middle images), giving a split signal upon interphase FISH, whilst the 6q23 breakpoint lies within clones RP11-905P20 (left image) and RP11-55H4 (right image), both of which give split signals. E: Q-PCR demonstrates that the MYB proto-oncogene located at 6q23 in Case 5 is not overexpressed by the translocation. MYB expression in Case 5 and in normal total bone marrow (BD Biosciences) was normalized to GAPDH and calibrated to levels in normal CD34+ cells.

Supplemental Figure 2. Copy number and CpG island methylation at the *PRDM16* promoter in AML patients. A: *PRDM16* copy number (yellow bars) was determined in genomic DNA derived from 12 AML patients without rearrangements of 1p36. Expression of *PRDM16* (grey) or *PRDM16+sPRDM16* (black) is shown for comparison (numbered as in Figure 2C). *PRDM16* copy number was normalized to the copy number of *HOXA9* and calibrated to normal human genomic DNA derived from peripheral blood

lymphocytes (PBL). **B**: Methylation status of the *PRDM16* gene promoter. CpG islands were sequenced for three AML patients with low levels of *PRDM16* expression (patients 3, 5 and 33) and for three patients with high levels of expression (patients 24, 38 and 40). The promoter of the long isoform (CpG: 406) is demethylated in patients showing high levels of *PRDM16* expression. No significant differences are seen at other potential transcriptional start sites located upstream of exon 1 (CpG: 129), exon 2 (CpG: 55), exon 3 (CpG: 61) and exon 4 (CpG: Ex4).

Supplemental Figure 3. Differential counts of lin- cells in in vitro assays. Differential counts (mitotic cells, granulocytes, macrophages and immature cells, myelocytes, ringshaped nuclei and maegakaryocytes as indicated) of lin- cells transduced with the indicated vectors, before (0) and upon serial replating (third and fourth, as indicated) in the presence of G-CSF and GM-CSF (G+GM, A), upon plating in the presence of EPO, IL3 and SCF (**B**) or after long-term culture (**C**). **D**: Representative images of the cell types scored in panels A-C.

Supplemental Figure 4. AML induced by sPRDM16 in a WT background. A: Overall survival of mice transplanted with WT lin- cells transduced with empty vector (MSCV), PRDM16 or sPRDM16. Two of the sPRDM16 mice developed AML at 137 days and 165 days post-transplantation. **B**: RT-PCR evaluation of sPRDM16 expression in the spleen of the leukemic mouse sacrificed at 165 days. Reactions in the presence (+) and absence (-) of reverse transcriptase (RT) are shown. **C-R**: Representative cytological, histological and immunohistochemical analysis from one sacrificed healthy control

MSCV mouse (C-J) and one sPRDM16 leukemic mouse (K-R). **C** and **K**: Peripheral blood (PB) smear (MGG, x400). **D** and **L**: Spleen imprint (MGG, x400). **E** and **M**: Bone marrow (BM) (HE, x400). **F** and **N**: Bone marrow (MPO, x200). **G** and **O**: Spleen (HE, x200). **H** and **P**: Spleen (MPO, x200). **I** and **Q**: Liver (HE, x400). **J** and **R**: Liver (MPO, x400). Neoplastic infiltration for each organ is indicated as: - absent; + minimum (<10%); ++ moderate (10-30%); +++ extensive (30-60%); or ++++ heavy/diffuse (60-100%). The percentage of cells staining positive for MPO also is indicated within the context of the neoplastic infiltrations.

Supplemental Figure 5. Differential counts on blood smears of transplanted mice. A: Differential counts (nucleated erythrocytes, lymphocytes, neutrophils, myelocytes, immature cell/blasts) in the peripheral blood of mice reconstituted with WT or p53-/- lincells, that were previously transduced with MSCV, PRDM16 or sPRDM16 vectors, as indicated. The health status of the analyzed mice is indicated: healthy, AML, MDS-like leukemia, non-thymic lymphoma, thymic lymphoma. The AMLs caused by expression of sPRDM16 are characterized by the presence of immature cells/blasts in the peripheral blood, comprising 20-25% of nucleated cells in a wild type background and 30-70% of nucleated cells in a p53-/- background. Nucleated erythroid cells are present exclusively in the mice expressing sPRDM16 in a p53-/- background. B: Representative images of the cell types scored in panels A.

Supplemental Figure 6. Diagnosis of thymic lymphoma and MPD-like leukemia in a p53-/- background. A: Peripheral blood smear of a PRDM16 (p53-/-) mouse that

developed a thymic lymphoma (MGG, x400). **B-C**: Pathology of a PRDM16 (p53-/-) mouse that developed a thymic lymphoma. Infiltrations comprised 30-60% of the lung (B: HE, x200), of which 90% stained positive for CD3 (C: α-CD3 staining, x400), confirming their T-cell origin. **D**: Peripheral blood smear of the MSCV (p53-/-) mouse that developed an MPD-like myeloid leukemia (MGG, x400). The majority of nucleated cells in the peripheral blood were mature neutrophils, distinguishing this MPD-like myeloid leukemia from the AML observed in the sPRDM16 mice.